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Abstract—This study provides a highly efficient online method
for vigilance analysis and verifies this theory in some experiments.
Compared with electroencephalogram (EEG) signals, electroocu-
lography (EOG) signals are easier to collect and faster to process.
Some research has proven relations between vigilance and EOG
features like blink features and slow eye movement (SEM). This
study uses 48 kind of features of eye blinks, SEM and rapid eye
movement (REM) from horizontal and vertical channels of EOG
signals. It is verified by experiments that the precision of this
method is higher than other methods which uses single kind of
features like eye blinks. This study also implements an online
vigilance analysis method and its precision is close to the offline
method after about one minute from the beginning of collecting
signals. With the application of dry electrode amplifiers, this
algorithm is useful in real-time vigilance estimation in practical
environment. This method can be an important part of brain-
machine interfaces.

Keywords—online analysis, vigilance, electrooculography.

I. INTRODUCTION

Vigilance refers to the sensitivity that someone maintain
when focusing on executing a task. People in many kind of
jobs—especially drivers, soldiers and operators of hazardous
equipment—need to keep high vigilance over a continuous
period of time. A lot of serious accidents are caused by driver
fatigue. Therefore, an accurate, fast and online method for
vigilance analysis is useful.

In recent years, there have been some studies of collecting
and processing electrooculography (EOG) signals. EOG sig-
nals contains only two channels, a horizontal channel and a
vertical channel, and there are fewer artifacts in EOG signals
than in EEG signals. Therefore, EOG signals are easy to
analyze and we can design a fast online algorithm to process
them. There are some methods for extracting eye blinks, slow
eye movement (SEM) and rapid eye movement (REM) and
they have a high accuracy only in processing clean EOG
signals [1], [2], [3], [4]. However, these methods have poor
performance in processing EOG signals collected by some
common equipment due to the interference in signals, just like
artifacts and voltage drift.

For vigilance analysis, there are some studies on the rela-
tions between EOG features and vigilance. Blink duration is
used as a feature to estimate sleepiness level and this property

* Corresponding author: bllu@sjtu.edu.cn

is verified by experiments of simulated driving performance
[5], [6], [7], [8]. Another important feature for vigilance
estimation is slow eye movement (SEM) [3], [9]. SEM features
extracted from EOG signals using discrete wavelet transforma-
tion (DWT) are strongly correlated with vigilance [4].

In this research, we introduce several new methods and take
advantage of the existing methods [10]. One new method is to
normalize the signal amplitude. The source signal collected
from the equipment of EOG does not have an equivalent
amplitude when used for extracting eye information. Because
the resistance of the person and the equipment, especially the
epidermis on the face, is not fixed and can be several times
larger at one time than another. As a result, if a fixed threshold
is used to get some actions of eyes, like eye blinks and eye
movements, a lot of errors will be made. In this study we use
the average eye blink amplitude as a standard to normalize
the amplitude of the source signals in case of an amplitude
difference. When this method is used in the online algorithm,
the signal can be processed correctly needing data of only
about one minute.

Some other methods are used to sense the actions of eyes
accurately. Thanks to these, eye blinks, SEMs and REMs can
be extracted completely although the artifacts in source signals
have a large amplitude and are distributed across almost all the
frequency bands. After the actions of the eyes are obtained, 48
kinds of features are extracted from these actions and they can
estimate the vigilance of one person by the method of machine
learning. This method of using all kinds of EOG features has
not yet been used and it works well.

In this study, according to the error rate signal, we use
SVM regression to get the predicted vigilance and compare
it with the original error rate. It is proved that this algorithm
works well on vigilance estimation. In a lot of previous
studies of vigilance estimation using methods of machine
learning before, vigilance estimation is regarded as a problem
of classification and the intermediate state is ignored. Another
problem is that EOG signals are dependent on time sequence
and the sequence of the signal of a period less than one minute
cannot be broken down. This study resolves these problems
successfully and finds the relationship between EOG signals
and vigilance.

This study contributes to the development part of brain-
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machine interfaces. EOG signals have several advantages over
EEG signals; they are easier to collect based on the dry
electrode amplifier and the technology of extracting EOG
signals from electrical signals on the forehead [11]. EOG
signals have a larger amplitude than electromyogram (EMG)
or EEG, so noise and artifacts caused by electromagnetic
interference are less of a problem. As a result, there are
fewer steps in processing EOG signals. The application of this
algorithm has an extensive future.

II. METHOD

A. Experiments

EOG signals are recorded by the NeuroScan system. A
session is about 67 minutes. 5 sessions from 4 men and 1
woman aged around 20 years old are recorded. One should
get up in the morning and have enough sleep last night.
Experiments are held after lunch in order that the subject is
awake in the beginning but sleepy after about half an hour in
the experiment.

The subject looks at the monitor and accomplishes a given
target action. There is no noise and the light is soft in the room.
Pictures of four colors which are red, yellow, blue and green,
appear in the monitor about every 6 seconds and every picture
lasts 0.3 seconds. There are 170 kinds of pictures including
almost all the traffic signals on the streets. The screen plays
all black in the intervals. The equipment that gets the actions
of subjects is a box with four buttons of the four colors on
it. When a picture is shown on the screen, the subject should
press the button with the color of the picture. The function
of playing pictures and recording the actions of subjects is
brought by the NeuroScan Stim software.

In our experiments, a total of signals of 62 EEG channels
and 2 EOG channels are recorded. Four electrodes are placed
to the left and right and above and below of the eyes of
the subject. The signal of horizontal channel is the electric
potential difference of the left and right ones and the signal of
vertical channel is from the up and the down ones. The signals
are recorded using a 32-bit resolution and 500Hz sampling
rate. In order to process the signal faster, the signal is down-
sampled at 125Hz. The vigilance data is taken from the error
rate data of subjects. The local error rate series calculated by a
2-minute time window were used as the vigilance index (with
a step of 8.096s, which is consistent with EOG features).

B. Blink features

The method of getting the difference of the signal and
marking the difference signal with a threshold is used as the
foundation of an eye blink algorithm [1]. There are several
disadvantages of this algorithm. The time of every blink is too
short. The voltage drift has a large influence on the process
of demarcating blinks using a stable threshold. Some adjacent
blinks should be one blink practically. Slow blinks are another
kind of blink and these should also be extracted.

In order to solve these problems, we add some advantages
in the algorithm. The time of every blink is extended so that
its blink time will be close to the real time of the blink. The
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Fig. 1. Example of marking a blink of four points using two thresholds.

threshold is not used to check the voltage to decide whether
a waveform is a blink but to check the average voltage of the
opening and closing periods. Some blink processes are merged
if they should be merged. Finally, an additional method is used
to add the slow blinks.

The blink detection algorithm is as follows.
1) Low-pass filtering: The vertical EOG signal is filtered

by a low-pass filter with a frequency 10Hz using eeglab [12].
2) Difference of signal: Get the difference of the signal and

every point means the change rate of the EOG signal at the
same time. The difference of a signal is as follows, D is the
difference signal, V is the signal and R is the sampling rate.

D[i] = (V [i+ 1]− V [i])×R (1)

3) Mark blinks: At first, use threshold Vcl > 0 and Vop < 0
to mark the signal and every point with a value dVcl or dVop

will be marked. If there are four continuous marked points
with values dVcl, dVcl, dVop and dVop, these four marks will
be recorded. There is an example shown in Fig.1.

Then for every four marked points cl1, cl2, op1 and op2,
we calculate the voltage for the blink as follows.

V = ((Vcl2 − Vcl1) + (Vop1 − Vop2))/2 (2)

If a group of marked points has V > Vmin, it is judged as
a possible blink and recorded.

In order to mark the slow blinks, we pick the left marked
points. For every op1 and op2, we try to use a smaller threshold
Vcls to mark two points before op1. If the time interval
between the wave peak and the wave valley is larger than
a threshold Tmin, it is judged as a slow blink.

4) Extend blink time: After all the blinks are picked,
we extend the time of every blink. We use two thresholds
Vclth and Vopth to extend the wave peak and wave valley
respectively. After this process, every blink is marked at four
time points clth1, clth2, opth1 and opth2.

5) Merge blinks: We check every group of adjacent blinks
for whether they should be merged. If the time interval
between two adjacent blinks is less than Tint and one of the



two blinks has blink time less than Tshort, these two blinks
should be merged and treated as one blink.

6) Get features: Finally, features of eye blink from EOG
will be extracted. The feature of one blink will be calculated as
follows, T is the time point, V is the signal, D is the difference
of signal, S is the velocity and E is the energy. For every blink,
Tblink is the total eye-blink time, Tclose is the time of closing
eyes, Topen is the time of opening eyes, Tclosed is the time
when the eyes are closed, perclos is the ratio between Tclosed

and Tblink, Tint is the time interval between two blinks, Sclose

is the average speed of closing eyes, Sopen is the average speed
of opening eyes, Sclosemax is the maximum speed of closing
eyes, Sopenmax is the maximum speed of opening eyes and
Eblink is the total eye-blink energy.

Tblink = Topth2 − Tclth1 (3)

Tclose = Tclth2 − Tclth1 (4)

Topen = Topth2 − Topth1 (5)

Tclosed = Topth2 − Tclth2 (6)

perclos = Tclosed/Tblink (7)

Tint[i] = Tclth1[i]− Topth2[i− 1] (8)

Sclose = (

Tclth2∑
i=Tclth1

Di)/Tclose (9)

Sopen = (

Topth2∑
i=Topth1

Di)/Topen (10)

Sclosemax = max
Tclth1≤i≤Tclth2

Di (11)

Sopenmax = max
Topth1≤i≤Topth2

Di (12)

Eblink =

Topth2∑
i=Tclth1

V 2
i (13)

After the feature of every blink is picked, we calculate
the features for 8-second intervals. The first dimension is
the number of blinks in 8 seconds. The left dimensions are
the average, maximum and minimum values of 11 features
calculated just now of all blinks in 8 seconds.

C. Normalization

Because the resistance of the total circuit of the signal
connection and amplifier is not fixed, the amplitude of the
signal has a large variance. Because of this problem, the source
EOG signal should be normalized and then its amplitude will
be an almost fixed value.

In experience, the average blink amplitude is a good stan-
dard because its value has a small variance no matter which
state one has and this theory is verified by a lot of EOG signals.
Based on this theory, a normalization algorithm is used to
normalize the amplitude of EOG signals. This algorithm uses
an iterative method. If a small threshold is given to judge

whether a waveform is a blink, some other waveforms such
as REMs or SEMs will be picked up because their amplitudes
are small in vertical EOG signals. As a result, the amplitude
of all the blinks marked using this small threshold will be
less than the practical one. When a standard amplitude is used
to normalize this value, the signal will be amplified. On the
other hand, if a large threshold is used, the signal will be
amplified with a multiplier less than 1. After several iterations,
the amplitude of signal will be normalized to a given standard.

The normalizing algorithm is as follows.
1) Preprocess: Same as extracting blink features, we get

the filtered signal using a low-pass filter with frequency 10Hz
and record this signal. The first scale factor is a fixed value
divided by the average value of this signal getting rid of typical
values.

2) Adjust signal amplitude: We use the multiplier to adjust
the amplitude of the signal as follows and m is the multiplier.

Vnew[i] = Vold[i]×m (14)

3) Get blink features: For the new signal, we use the blink
algorithm to extract all the blinks and calculate the average
amplitude of blinks Vblink. Then we get the multiplier m using
the standard as follows.

m = Vnormal/Vblink (15)

If the iteration of the signal is in a stable state, for example, a
fixed value or two alternating fixed values, the iteration process
is completed. If the process is not completed, return to process
2.

4) Get normalized signals: After this iteration, we get a
multiplier. The normalized EOG signals are adjusted using
this multiplier. For simplicity, the two channels of EOG
are adjusted together using the multiplier. These normalized
signals are the final signals for all the feature extracting
processes.

D. SEM features

The SEM feature is a good feature for vigilance estimation
because its performance has an important relation with the
fatigue and drowsiness of people. In order to get SEMs more
accurately, two methods of Fourier transformation and wavelet
transformation are used. The resulting of feature is the number
of SEMs in 8 seconds and it has 2 dimensions because of the
two methods.

In the Fourier transformation method, we use a band-pass
filter with frequency 0.5Hz and 2Hz to process the horizontal
EOG signal. The filtered signal is measured by a threshold and
a sequence of a wave peak and a wave valley is considered
as a SEM. The number of SEMs in 8 seconds is one of the
SEM features.

The Fourier transformation can make the frequency features
of the signal stand out and the wavelet transformation can
show the eye movements clearly. A wavelet decomposition
operates on the horizontal EOG channel of signals and the
Daubechies order 4 wavelet (db4) is selected because the shape
of this wavelet is the most similar to eye movements.



The sampling rate is 125Hz and the period is 8 seconds.
Because there are 1000 points in one period, we use 1024
points (24 points from the last period) to extract a feature point
and divide the signal using a 10-order wavelet transformation.
The 6 and 7 scale is selected to express SEMs. After the
6 and 7 scale of coefficients are reconstructed to a signal,
we use a threshold to detect SEMs just like using a Fourier
transformation.

E. REM features

Like SEM features, rapid eye movement (REM) features
also have relationship to vigilance. REM is another kind of eye
movement and number of REMs, time of REMs and energy
of REMs are correlated with drowsiness. The feature defined
as number of REMs is extracted by the difference of signal
and the feature defined as time of REMs is extracted by two
methods, Fourier transformation and wavelet transformation.

This is the Fourier transformation method. First, use a band-
pass filter with frequency between 3Hz and 11Hz to process
the signal. Then get the difference of the signal. Finally, we
use a threshold to get how long there is in REM action every
8 seconds.

The other two methods are the same as the process of
getting SEM features. The frequency of the band-pass filter is
between 2.5Hz and 7Hz. The scale of coefficients of wavelet
reconstructing is scale 4, 5 and 6.

F. Energy features

Just like the method of EEG analysis, the energy of different
frequency bands in the EOG can express the intensity of
different kinds of eye movements. We use two methods to
get the energy features from the EOG, Fourier transformation
and wavelet transformation.

For the Fourier transformation, five bands are selected as
features. The SEM band is between 0.1Hz and 1.8Hz. The
REM bands are 1.8Hz-3Hz, 3Hz-6Hz, 6Hz-9Hz and 9Hz-
11Hz. According to the Parseval equation, the sum of squares
in the time domain equals to that in the frequency domain.
Therefore, the energy of a band is the sum of squares of
signal values after band-pass filtering; this is calculated every
8 seconds.

E8s =
125∗8∑
i=1

V 2
i (16)

Using wavelet transformation, we get the SEM energy in
scale 5 and 6 and the REM energy in scale 3 and 4. The
energy is also calculated in the time domain. We add the last
24 points of the last period so that there are 1024 points for
us to process. After the wavelet transformation, the last 1000
points are selected.

Although the energy of a frequency band or wavelet band
can express the intensity of eye movements well, the ratio of
energy of two different bands is more important for vigilance
estimation. When a person is excited, high frequency eye
movements will increase and low frequency eye movements
will decrease. When a person is drowsy, vice versa. As a result,

a feature of ratio between energy of low frequency and energy
of high frequency is used.

The ratio of energy for frequency bands is between 0.1Hz-
0.8Hz and 0.8Hz-11Hz and that for wavelet bands is between
scale from 4 to 6 and scale from 4 to 10. The ratios are
calculated as follows.

R8s = (
125∗8∑
i=1

V 2
1i)/(

125∗8∑
j=1

V 2
2j) (17)

G. Feature processing

There are 48 features extracted from the 2-channel EOG
signals. Since the features have a lot of noise and are not
smooth enough, we use the linear dynamical system (LDS)
[13] to process features. Its effect is better than simple methods
like moving average smoothing. LDS is an unsupervised
learning method and it can increase the main component and
reduce others. Because the main component of these features is
vigilance, a feature processed by LDS has a higher correlation
with vigilance.

Another step of feature processing is to adjust features to
a scale of 0 and 1. In this step, two thresholds are used for
each feature to avoid extreme values so that noise is reduced.
After feature processing, it is easy to observe the relationship
between features, the error rate.

H. Regression using machine learning methods

After all the features are prepared, a machine learning
method is used to analyze the relations between features and
vigilance. First, use principle component analysis (PCA) to
process higher-dimension features. Then divide the data for
each subject into two parts, a training set and a testing set.
The result of relation coefficients and testing precision proves
that EOG signals can estimate vigilance and this method is a
good way to implement this algorithm.

We use SVM regression to train the model from features and
error rate and then predict values of vigilance. The result is
compared with error rate. Data for each subject is processed
separately because a model trained by data of one subject
cannot work well on data of another. The data for each subject
is divided into two parts of training set and testing set and then
cross validation is done.

SVM with RBF kernel works well. There are three param-
eters in SVM needed to be tuned. Every parameter is selected
from a set of 21 values from 2−10 to 210. All of the 9261
values of parameters are searched and the final parameter is
determined. A good parameter can not only predict values
accurately but also balance the mean squared error and squared
correlation coefficient well. After all, it is important to make
the model stable in this application of EOG.

III. RESULT

A. Eye actions detection

1) Eye blinks detection: In the eye blink detection algorith-
m, several advantages are brought. More kinds of eye blink are
detected, such as long-time blinks and slow blinks. Time of
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Fig. 3. Example of eye movements detection using Fourier transform.

blinks is estimated more accurately. These advantages improve
the accuracy of blink features.

A result of eye blink detection is showed in Fig.2. VEO is
the source vertical EOG signal filtered by a low-pass filter
with frequency 10Hz and dVEO is the difference of the
filtered source signal. There are 6 eye actions in a period
of 16 seconds. Using this improved algorithm, the type of
every action is distinguished completely. No.1 is a slow blink,
No.2 is an eye movement but not a blink, No.3 and No.5 are
common blinks, No.4 has two blinks in it and No.6 has only
one blink because the two blinks in it are merged. It is proved
that kinds of blinks are detected all and few blinks are detected
incorrectly.

2) Eye movements detection: A result of eye movements
detection is showed in Fig.3 and Fig.4. This signal is selected
with the same subject and the same period of Fig.2 of eye
blink detection.

Fig.3 shows the result of the band-pass filter. HEO is the
source horizontal EOG signal. HEOLF is the low-frequency
part including SEMs. We can count SEMs every 8 seconds
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Fig. 4. Example of eye movements detection using wavelet transform.
TABLE IV

CORRELATION COEFFICIENTS BETWEEN ERROR RATE AND PRINCIPLE
COMPONENT OF FEATURES.

Subject 1st 2nd 3rd
1 -0.766 -0.201 0.244
2 -0.868 0.190 0.148
3 -0.844 0.305 -0.148
4 -0.853 -0.098 0.101
5 -0.726 0.379 0.287

Average -0.811 0.115 0.126

using a threshold to process this signal. HEOHF is the high-
frequency part and dHEOHF is the difference of HEOHF.
dHEOHF shows the velocity of eye movements and eyes are
in REM state during periods when it is more than a threshold.
Therefore, we get how long there is REM action every 8
seconds. HEOHF is used the same as HEOLF to count REMs.

Fig.4 shows the result of the wavelet filter. HEO, HEOLF
and HEOHF are also the source horizontal EOG signal, its
low-frequency and its high-frequency part. We consider that
signal brought from wavelet filter is similar to that from band-
pass filter but a little more correct.

B. Correlations between features and vigilance

There are 48 features extracted by EOG signals including
34 features of eye blink, 2 features of SEM, 3 features of REM
and 9 features of energy. From the result in Table.I, II, III, we
can see that almost all features including blink, SEM, REM
and energy features correlate with error rate. Therefore, these
features will be used for vigilance estimation.

From these tables, it is also clear that simple features such
as number of blinks, number of SEMs, number of REMs
and REM time, are more useful. They have larger correlation
coefficients with vigilance and they are almost enough. How-
ever, a lot of other features in addition are provided to decide
whether they include some component that common features
don’t include. PCA is used to extract components from these
features and to process features for classification.

Table.IV shows correlation coefficients of the first three



TABLE I
CORRELATION COEFFICIENTS BETWEEN ERROR RATE AND COMMON EOG FEATURES.

Subject blinks SEMs Fourier SEMs wavelet REMtime REMs Fourier REMs wavelet
1 -0.790 0.655 0.641 -0.796 -0.734 -0.704
2 -0.705 0.606 0.669 -0.796 -0.811 -0.844
3 -0.864 0.712 0.606 -0.702 -0.806 -0.752
4 -0.822 0.762 0.676 -0.866 -0.856 -0.802
5 -0.797 0.799 0.679 -0.777 -0.797 -0.749

Average -0.796 0.707 0.654 -0.788 -0.801 -0.770

TABLE II
CORRELATION COEFFICIENTS BETWEEN ERROR RATE AND EYE BLINK FEATURES.

Subject Tblink Tclose Topen Tclosed perclos Tint Sclose Sopen Smaxcl Smaxop Eblink

0.651 0.724 0.576 0.648 0.750 0.690 -0.813 -0.708 -0.819 -0.669 0.442
1 0.620 0.677 0.179 0.633 0.731 0.569 -0.813 -0.665 -0.826 -0.733 0.009

0.693 0.698 0.769 0.663 0.724 0.718 -0.811 -0.771 -0.838 -0.809 0.725
0.821 0.840 0.551 0.792 0.637 0.785 -0.676 -0.755 -0.635 -0.731 0.821

2 0.811 0.874 0.086 0.796 0.724 0.566 -0.815 -0.687 -0.658 -0.588 0.877
0.815 0.861 0.747 0.769 0.675 0.801 -0.626 -0.824 -0.434 -0.844 0.809
0.677 0.780 0.729 0.643 0.724 0.844 -0.893 -0.776 -0.896 -0.640 0.620

3 0.628 0.585 -0.223 0.614 0.538 0.843 -0.813 -0.818 -0.893 -0.873 0.446
0.694 0.838 0.885 0.635 0.737 0.844 -0.750 -0.538 -0.682 0.168 0.728
0.717 0.333 0.682 0.715 0.612 0.720 -0.711 -0.632 -0.689 -0.446 0.395

4 0.642 0.346 -0.190 0.659 -0.141 0.715 -0.724 -0.525 -0.830 -0.710 0.488
0.748 0.665 0.858 0.727 0.699 0.726 -0.169 -0.037 -0.227 0.108 0.675
0.689 0.258 0.732 0.693 0.714 0.688 -0.707 -0.734 -0.735 -0.662 0.461

5 0.706 0.715 -0.371 0.690 0.532 0.671 -0.644 -0.706 -0.766 -0.696 0.731
0.652 0.400 0.666 0.678 0.772 0.709 -0.484 -0.667 -0.508 -0.736 0.635
0.711 0.587 0.654 0.698 0.687 0.745 -0.760 -0.721 -0.755 -0.630 0.548

Average 0.681 0.640 -0.104 0.678 0.477 0.673 -0.762 -0.680 -0.795 -0.720 0.510
0.720 0.693 0.785 0.694 0.721 0.759 -0.568 -0.567 -0.538 -0.423 0.714

TABLE III
CORRELATION COEFFICIENTS BETWEEN ERROR RATE AND ENERGY FEATURES.

Subject 0.1-1.8Hz 1.8-3Hz 3-6Hz 6-9Hz 9-11Hz 6-7scale 3-4scale ratio freq ratio wavelet
1 0.685 -0.679 -0.679 -0.711 -0.802 0.619 -0.667 0.513 -0.760
2 0.625 -0.657 -0.778 -0.744 -0.748 0.650 -0.808 0.815 -0.633
3 0.619 -0.716 -0.774 -0.525 -0.501 0.813 -0.639 0.564 -0.884
4 0.705 -0.843 -0.805 -0.745 -0.811 0.842 -0.791 0.445 -0.586
5 0.795 -0.788 -0.693 -0.755 -0.809 0.625 -0.716 0.781 -0.754

Average 0.686 -0.737 -0.746 -0.696 -0.734 0.710 -0.724 0.623 -0.723
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TABLE V
RESULT OF REGRESSION TEST.

Subject Mean squared error Squared correlation coefficient
1 0.00738624 0.909072
2 0.00708072 0.831733
3 0.00529245 0.913794
4 0.00936741 0.914622
5 0.00427124 0.936210

Average 0.00667961 0.901086

principle components. Only the first principle component is
stably correlated with the target label; the others are not
stable. This brings up an important fact that the first principle
component of all features is closely related to error rate, or
vigilance. Fig.5 shows the error rate in blue and the first
component in red for subject No.2. Therefore, we completely
fetch features from EOG signals and process them and a
regression test will be brought soon.

C. Predicted result of regression

The result of the regression test is in Table.V.
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Fig. 6. Example of comparison between error rate and predicted result.

Data for each subject is 400 points long. It is divided into
10 parts with the same length. In most previous EOG research,
the sequence of points is changed. However, the EOG signal is
time-sequential and cannot divide into parts with a short term.
For this reason, all 400 points are divided sequentially. After
the data is divided, the 2nd, 5th and 8th part are selected as
the testing set and others are selected as the training set.

We use LibSVM [14] to train and test data. After a process
of parameter selection, all of the parameters are selected.

• s=3 (ϵ-SVR)
• t=2 (RBF kernel)
• c=8

• g=1/64
• p=1/1024

From the result we see that this test gives good accuracy.
Fig.6 shows the best predicted result in red compared with
the original label of error rate in blue, or vigilance. In the
application of a fatigue detecting system, we only need to
know whether the subject is fatigued enough and this algorithm
will work better.

D. Speed of algorithm

This algorithm is fast enough. On a 3.2GHz Core i5 with
4GB memory, the program in Matlab takes less than 8 seconds
to process signals for 3200 seconds signals. If it is used
to output the vigilance of one person every 8 seconds, this
algorithm can be used online.

IV. CONCLUSION

This work is based on some existing work on EOG signal
processing and relations between EOG and vigilance. In this
work, an algorithm to extract all EOG features including
blinks, SEMs, REMs and energy is put forward. All features,
especially blink features, are detected and analyzed more ac-
curately. The results from experiments show that the algorithm
gives high precision and is fast enough for online use. In
the future, more experiments will be done and the stability
and robustness of this algorithm will be improved. This study
provides an important result in brain-machine interfaces. This

work will be widely used in vehicles, army and hospitals with
simple and portable equipment of EOG collection.
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